
Download free eBooks at bookboon.com

Applications of Prolog

161

Solutions of Selected Exercises

Appendix A

Solutions of Selected Exercises

A.1 Chapter 1 Exercises

All Prolog source code for Chap. 1 is available in the file enigma.pl.

Exercise 1.1. We first disassemble the list and then assemble the reduced list by leaving out one element:

remove_one(List,E,Reduced) :- append(Front,[E|Back],List),

append(Front,Back,Reduced).

Exercise 1.2. Define

var_matrix(Size,M) :- repeat(Size,Size,RowLengths),

maplist(var_list,RowLengths,M).

with the predicate repeat/3 ,

repeat(X,1,[X]) :- !.

repeat(X,N,[X|R]) :- NewN is N - 1,

repeat(X,NewN,R).

for producing lists with the same entry repeated a specified number of times.

Exercise 1.3. We show three approaches. The first is, as originally suggested, by recursion.

list_permute([],_,[]).

list_permute([P1|Rest],L,[H|T]) :- nth1(P1,L,H),

list_permute(Rest,L,T).

An alternative definition uses bagof/3 .

?- Perm = [3,1,2], L = [R1, R2, R3], bagof(E, I^(member(I,Perm), nth1(I,L, E)),P).

Perm = [3, 1, 2]

L = [_G642, _G645, _G648]

P = [_G648, _G642, _G645]

Finally, we may use maplist/3 as indicated by the query below.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

162

Solutions of Selected Exercises

?- dynamic(nth1 new/3), retractall(nth1 new(, ,)), assert(nth1 new(L, I, E) :- nth1(I, L, E)),

Perm = [3,1,2], L = [R1, R2, R3], maplist(nth1_new(L),Perm,P).

Perm = [3, 1, 2]

L = [_G1122, _G1125, _G1128]

P = [_G1128, _G1122, _G1125]

Exercise 1.4. The predicate col/3 , defined by

col(Matrix,N,Column) :- maplist(nth1(N),Matrix,Column).

returns a specified column of a matrix as a list. We now assemble the transposed matrix T as the list of the
columns of the original matrix M .

transpose(M,T) :- [H|_] = M, % get H to measure NCols

length(H,NCols),

bagof(N,between(1,NCols,N),L),

maplist(col(M),L,T).

Exercise 1.5. The predicate notin/2 , defined by

notin(_,[]).

notin(E,[H|T]) :- E \== H, notin(E,T).

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Applications of Prolog

163

Solutions of Selected Exercises

succeeds if the first argument is not equivalent to any of the list entries. distinct/1 is defined by recursion
using notin/2 .

distinct([_]).

distinct([H|T]) :- notin(H,T), distinct(T).

Exercise 1.6. We first define retain var(+Var,+VarList,-List) by

retain_var(_,[],[]).

retain_var(V,[H|T],[H|L]) :- H == V, retain_var(V,T,L).

retain_var(V,[H|T],L) :- H \== V, retain_var(V,T,L).

It will be used as an auxiliary predicate where List will contain as many copies of Var as there are in VarList .
For example,

?- retain var(B,[A, B, A, C, B, A],L).

L = [G357, _G357]

Now, count the number of entries in List .

count_var(VarList,Var,Num) :- retain_var(Var,VarList,List),

length(List,Num).

An alternative, more concise (one clause) solution is suggested by the query

?- bagof(E,(member(E,[A, B, A, C, B, A]), E == A), L),

length(L,N).

N = 3

Exercise 1.7. We define zip/3 by recursion.

zip([],_,[]) :- !.

zip(_,[],[]) :- !.

zip([H1|T1],[H2|T2],[(H1,H2)|T]) :- zip(T1,T2,T).

The input lists need not be of the same length in which case the excess tail section of the longer one will be
ignored.

Exercise 1.8. Define total/2 by

total(IntPairs,Total) :- total(IntPairs,0,Total). % clause 0

total([],S,S). % clause 1

total([(X,Y)|T],Acc,S) :- NewAcc is Acc + X * Y, % clause 2

total(T,NewAcc,S).

The corresponding annotated hand computations are shown in Fig. A.1.

Exercise 1.9. We first define write ilist(+Width,+List) by

write_ilist(Width, List) :- length(List,Length),

int_to_atom(Width,WidthA),

concat_atom([’%’,WidthA,’r’],Atom),

repeat(Atom,Length,Format1),

append(Format1,[’]’],Format2),

concat_atom([’[’|Format2],Format),

writef(Format,List).

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

164

Solutions of Selected Exercises

total([(1,10),(2,100),(3,1000)],Total)
0©

��

total([(1,10),(2,100),(3,1000)],0,Total)
2©

��

total([(2,100),(3,1000)],10,Total)
2©

��

total([(3,1000)],210,Total)
2©

�� total([],3210,Total)
1©

��

Total = 3210
0©

�� success

Figure A.1: Hand Computations for total/2

for displaying an integer list in the right justified fashion. Width takes the number of digits reserved for the
display of each entry. For example,

?- write ilist(8, [12, 345, 6789]).

[12 345 6789]

(repeat/2 has been taken from the solution of Exercise 1.2, p. 161.)
The matrix is finally displayed row-wise by

write_imatrix(Matrix) :- largest(Matrix,Max),

ndigits(Max,ND),

Width is ND + 2,

write_imatrix(Width,M).

using the predicates

• largest(+Matrix,-Max) for calculating the largest entry of Matrix (definition not shown here),

• ndigits/2 for calculating the number of digits of a number is defined in terms of digits/2 by

ndigits(N,ND) :- digits(N,D), length(D,ND).

(digits/2 was defined in Exercise 4.8 of [9, p. 136] to return the list of digits of an integer; see also
[9, pp. 173–174].)

• write imatrix/2 with

write_imatrix(_,[]).

write_imatrix(Width, [H|T]) :- write_ilist(Width, H), nl,

write_imatrix(Width, T).

Exercise 1.10. The completed Table 1.3 is shown as Table A.1. As the full definition of next partition/2

is available in enigma.pl, we want to elaborate on one particular case only, typified by the fifth column in
Table A.1. The Ferrers diagrams of the ‘current’ and ‘next’ partition are shown in Fig. A.2, part (a) and (b),
respectively. We proceed as follows.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

165

Solutions of Selected Exercises

Current Partition [234162] [4163] [4352] [13243142]

Next Partition [12224162] [113163] [11314252] [15233142]

Step Used (i) (i) (i) (ii)

Current Partition [155162] [135172] [154351]

Next Partition [214262] [4272] [334251]

Step Used (ii) (ii) (ii)

Table A.1: Partitions

• We unify the current partition’s list representation with [(1,A),(K,1)|T] . (The group of sixes will, since
they remain unchanged, be subsumed in the list’s tail.)

• The total number of marked tokens is A + L . They are to form as many groups of size L - 1 as possible.
The number of them will be computed by integer division (//). The leftovers form the bottom row of the

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Applications of Prolog

166

Solutions of Selected Exercises

© © © © © ©
© © © © © ©
©× ©× ©× ©× ©×
©×
©×
©×
©×
©×

© © © © © ©
© © © © © ©
©× ©× ©× ©×
©× ©× ©× ©×
©× ©×

(a) (b)

[(1,5),(5,1),(6,2)] [(2,1),(4,2),(6,2)]

Figure A.2: Ferrers Diagrams and their Prolog Representations

new Ferrers diagram. The number of them is the division’s remainder (Prolog’s mod).

• These ideas give rise to the following clause.

next_partition([(1,A),(L,1)|T],[(Rest,1),(NewL,Rat)|T]) :- L > 2,

NewL is L - 1,

Rest is (A + L) mod NewL,

Rest > 0,

Rat is (A + L) // NewL.

Exercise 1.11. Define next int/3 by

next_int(High,I,NextI) :- succ(I,NextI), NextI =< High.

and use it as

?- generator(next int(9),3,I).

I = 3 ;

I = 4 ;

...

I = 9 ;

No

(This is in effect a new implementation of the built-in predicate between/3 [9, p. 41].)

Exercise 1.12. The horizontal and vertical transitions in Fig. 1.6 are encoded by

next_pair((0,0),(0,1)) :- !.

next_pair((0,N),(0,NextN)) :- even(N), succ(N,NextN), !.

next_pair((M,0),(NextM,0)) :- odd(M), succ(M,NextM), !.

where even/1 and odd/1 are respectively defined by

even(N) :- 0 is N mod 2. odd(N) :- 1 is N mod 2.

The built-in conditional ->/2 [9, p. 91] may be used to implement the diagonal transitions in Fig. 1.6.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

167

Solutions of Selected Exercises

�

�

�

�

?- current predicate(Pred,), atom prefix(Pred,’temp’).

No

?- tmp predname(Temp), Term =.. [Temp,(I, I)], assert(Term).

Yes

?- current predicate(Pred,), atom prefix(Pred,’temp’).

Pred = temp 0 ;

No

?- tmp predname(Temp), Term =.. [Temp,(I, I)], assert(Term).

Yes

?- current predicate(Pred,), atom prefix(Pred,’temp’).

Pred = temp 1 ;

Pred = temp 0 ;

No

Figure A.3: Creating Distinct Temporary Predicate Names

next_pair((M,N),(NextM,NextN)) :- Sum is M + N,

(odd(Sum) -> succ(M,NextM), succ(NextN,N);

succ(NextM,M), succ(N,NextN)), !.

Pairs starting with (1,1) , say, are generated by

?- generator(next pair,(1,1),P).

P = 1, 1 ;

P = 0, 2 ;

P = 0, 3 ;

P = 1, 2 ;

...

Exercise 1.13. tmp predname/1 returns, each time it is invoked, an atom for naming a temporary predicate.

tmp_predname(Temp) :- int(0,N),

int_to_atom(N,Tag),

concat_atom([’temp_’,Tag],Temp),

not(current_predicate(Temp,_)), !.

The interactive session in Fig. A.3 illustrates how tmp predname/1 may be used to produce predicate names
hitherto not present in the database. (See also inset.) In the definition of the new version of generator/3 ,
its structure is retained except that now the goals (terms) referring to the temporary predicate are constructed
using the built-in predicate univ (=..) [9, p. 43].

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

168

Solutions of Selected Exercises

Built-in Predicate: atom prefix(+Atom,+Prefix)

Succeeds if the second argument is a Prefix to the Atom in the first argument.
Example:

?- atom prefix(software,soft).

Yes

?- atom prefix(software,war).

No

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Applications of Prolog

169

Solutions of Selected Exercises

generator2(Pred,From,Elem) :- tmp_predname(TempName),

Term1 =.. [TempName,First,First],

Term2 =.. [TempName,Last,E],

Term3 =.. [TempName,New,E],

Term4 =.. [TempName,From,Elem],

assert(Term1),

assert(Term2 :- (call(Pred,Last,New), Term3)),

write(’Defined ’),

write(TempName),

write(’/2 in the database.\n’),

Term4.

(Lines reporting new predicates’ names have been included.) We now use the new version of generator/3 to
define a new version of pairs/1 by

pairs2((I,J)) :- generator2(succ,0,Sum),

generator2(next_int(Sum),0,I),

J is Sum - I.

It will behave on backtracking as intended:

?- pairs2(P).

Defined temp_0/2 in the database.

Defined temp_1/2 in the database.

P = 0, 0 ;

Defined temp_2/2 in the database.

P = 0, 1 ;

P = 1, 0 ;

Defined temp_3/2 in the database.

P = 0, 2 ;

P = 1, 1 ;

...

We may wish to remove all unwanted temporary predicates from the database. This is accomplished by the
following failure driven loop.

?- current predicate(Pred,), atom prefix(Pred,’temp ’), Term =.. [Pred,’ ’,’ ’], retractall(Term), fail.

No

The query below finally confirms that no predicate of arity 2 whose name starts with ‘temp_’ is left in the
database.

?- current predicate(Pred,), atom prefix(Pred,’temp ’), atom concat(Pred,’/2’,P)1, listing(P), fail.

ERROR: No predicates for ‘temp_1/2’

ERROR: No predicates for ‘temp_0/2’

ERROR: No predicates for ‘temp_3/2’

ERROR: No predicates for ‘temp_2/2’

No

Exercise 1.14. Based on the annotated hand computations in Fig. A.4, p. 170, the predicate split/4 is
defined in (P-A.1).

1We have met atom concat/3 in [9, p. 138].

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

170

Solutions of Selected Exercises

split([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], [(2,1),(3,3),(5,1)], [], S)
3©

��

split([3,4,5,6,7,8,9,10,11,12,13,14,15,16], [(2,0),(3,3),(5,1)], [[1,2]], S)
2©

��

split([3,4,5,6,7,8,9,10,11,12,13,14,15,16], [(3,3),(5,1)], [[1,2]], S)
3©

��

split([6,7,8,9,10,11,12,13,14,15,16], [(3,2),(5,1)], [[3,4,5], [1,2]], S)
3©

��

split([9,10,11,12,13,14,15,16], [(3,1),(5,1)], [[6,7,8], [3,4,5], [1,2]], S)
3©

��

split([12,13,14,15,16], [(3,0),(5,1)], [[9,10,11], [6,7,8], [3,4,5], [1,2]], S)
2©

��

split([12,13,14,15,16], [(5,1)], [[9,10,11], [6,7,8], [3,4,5], [1,2]], S)
3©

��

split([], [(5,0)], [[12,13,14,15,16], [9,10,11], [6,7,8], [3,4,5], [1,2]], S)
1©

��

reverse([[12,13,14,15,16], [9,10,11], [6,7,8], [3,4,5], [1,2]], S) ��

S = [[1,2], [3,4,5], [6,7,8], [9,10,11], [12,13,14,15,16]] �� success

Figure A.4: Annotated Hand Computations for split/4

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Applications of Prolog

171

Solutions of Selected Exercises

Prolog Code P-A.1: Definition of split/4

1 split([],[(_,0)],Acc,S) :- reverse(Acc,S), !. % clause 1

2 split(L,[(_,0)|T],Acc,S) :- split(L,T,Acc,S). % clause 2

3 split(L,[(K,AlphaK)|T],Acc,S) :- % clause 3

4 AlphaK > 0, %

5 append(L1,L2,L), %

6 length(L1,K), %

7 NewAlphaK is AlphaK - 1, %

8 split(L2,[(K,NewAlphaK)|T],[L1|Acc],S). %

(Notice the concise way L1 is declared to be the front part of L with a specific length.)

A.2 Chapter 2 Exercises

All Prolog source files for Chap. 2 are available in the directory plsearch.

Exercise 2.2, part (a). Add to the database in Fig. 2.2 the facts

connect(u,v). connect(u,w). connect(v,w).

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

172

Solutions of Selected Exercises

depth first(d,c)
0©

�� dfs loop([d],[],c)
2©

��

dfs loop([e,s,a],[d],c)
2©

�� dfs loop([f,b,s,a],[e,d],c)
2©

��

dfs loop([g,b,s,a],[f,e,d],c)
2©

�� dfs loop([b,s,a],[g,f,e,d],c)
2©

��

dfs loop([c,a,s,a],[b,g,f,e,d],c)
1©

�� success

Figure A.5: Hand Computations for the Query ?- depth first(d,c).

Part (b). The successor nodes used in the hand computations for the query ?- depth first(d,c).

(Fig. A.5) may be gleaned from Fig. 2.4, p. 50. The interactive session in Fig. A.6, p. 173, confirms the hand
computations. The hand computations for the query ?- depth first(u,c). are shown in Fig. A.7, p. 173.
(The tree in Fig. A.8, p. 173, drawn by inspecting the database, may be used to work out successor nodes.)
They are confirmed by the query in Fig. A.9, p. 174. The query in Fig. A.9 illustrates a perhaps unexpected
feature of our implementation: it is possible for a node to be open and closed at the same time. (Algorithm
2.3.2 does not check for this condition.)

Exercise 2.3. We consider two possibilities. The first definition in (P-A.2) uses maplist/3 .

Prolog Code P-A.2: First definition of extend path/3

1 extend_path(Nodes,Path,ExtendedPath) :-

2 maplist(glue(Path),Nodes,ExtendedPath).

3 glue(T,H,[H|T]).

The auxiliary predicate glue/3 in (P-A.2) is for ‘glueing’ head and tail together. (The order of arguments of
glue/3 is chosen so as to facilitate partial application of glue/3 in (P-A.2) by fixing its first argument.) In
(P-A.3) another definition of extend path/3 is shown. It uses recursion.

Prolog Code P-A.3: Second definition of extend path/3

1 extend_path([],_,[]). % clause 1

2 extend_path([Node|Nodes],Path,[[Node|Path]|Extended]) :- % clause 2

3 extend_path(Nodes,Path,Extended). %

We shall be working with (P-A.3) in the main body of the text.

Exercise 2.4. For the new connectivity, add the clause

connect(b,s).

to the file links.pl.
The new version of is path/1 (in the file searchinfo.pl) will be formulated as a negation, i.e.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

173

Solutions of Selected Exercises

�

�

�

�

?- consult(df2).

% links compiled into edges 0.00 sec, 1,900 bytes

% df2 compiled 0.05 sec, 3,892 bytes

Yes

?- depth first(d,c).

Open: [d], Closed: []

Node d is being expanded. Successors: [e, s, a]

Open: [e, s, a], Closed: [d]

Node e is being expanded. Successors: [f, b, d]

Open: [f, b, s, a], Closed: [e, d]

Node f is being expanded. Successors: [g, e]

Open: [g, b, s, a], Closed: [f, e, d]

Node g is being expanded. Successors: [f]

Open: [b, s, a], Closed: [g, f, e, d]

Node b is being expanded. Successors: [c, e, a]

Open: [c, a, s, a], Closed: [b, g, f, e, d]

Goal found: c

Yes

Figure A.6: Interactive Session for the Query ?- depth first(d,c).

depth first(u,c)
0©

�� dfs loop([u],[],c)
2©

��

dfs loop([v,w],[u],c)
2©

�� dfs loop([w,w],[v,u],c)
2©

��

dfs loop([w],[w,v,u],c)
2©

�� dfs loop([],[w,w,v,u],c) �� failure

Figure A.7: Hand Computations for the Query ?- depth first(u,c).

w
...

u
...

�
�
�

4
4
4

v

u
...

v
...

	
	
	

4
4
4

w

5
5
5
5

�
�
�
�

u

Figure A.8: Tree for Finding Successor Nodes in the New Component

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

174

Solutions of Selected Exercises

�

�

�

�

?- depth first(u,c).

Open: [u], Closed: []

Node u is being expanded. Successors: [v, w]

Open: [v, w], Closed: [u]

Node v is being expanded. Successors: [w, u]

Open: [w, w], Closed: [v, u]

Node w is being expanded. Successors: [u, v]

Open: [w], Closed: [w, v, u]

Node w is being expanded. Successors: [u, v]

Open: [], Closed: [w, w, v, u]

No

Figure A.9: Interactive Session for the Query ?- depth first(u,c).

is_path(L) :- not(prohibit(L)).

with prohibit/1 specifying the conditions which a path must not have.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Applications of Prolog

175

Solutions of Selected Exercises

Example Path Prolog Clause

� ��
��

�/

�
���

n2 n1

n3

· · ·
same([N1,N2,N3,N1,N2|]).

� ��
�

�

�

�
�

�
��

n2 n1

n4n3

· · ·
same([N1,N2,N3,N4,N1,N2|]).

Table A.2: Example Paths and Prolog Implementations – Case One

• Not allowed is a path whose leading edge is the same as some other edge in its tail (see Table A.2). This
condition is implemented by

same([N1,N2,_,N1,N2|_]).

same([N1,N2,_|T]) :- same([N1,N2|T]).

• Not allowed is a path whose leading edge is opposite to some other edge in its tail (see Table A.3). This
condition is implemented by

opposite([N1,_,N1|_]).

opposite([N1,N2,_,_,N2,N1|_]).

opposite([N1,N2,N3,N4,_|T]) :- opposite([N1,N2,N3,N4|T]).

It is seen by an inductive argument that if the above two conditions are observed, no path with repeated edges
will ever be constructed by the search algorithm. Concentrating on the leading edge therefore does not pose a
restriction but simplifies the implementation. Define now prohibit/1 in searchinfo.pl by

prohibit(L) :- same(L).

prohibit(L) :- opposite(L).

The new version of depth first/4 will behave as illustrated in Fig. A.10, p. 176.

Exercise 2.5. The new version will be placed in the same file as the old one (viz df.pl). We start by defining
a new version of extend path/3 , called extend path dl/3 , as shown in Fig. A.11, p. 177.

This is a straightforward ‘translation’ of extend path/3 and it behaves as follows,

?- extend path dl([f,d],[e,b,a,s],L3-L1).

L3 = [[f, e, b, a, s], [d, e, b, a, s]| G361]

L1 = G361 ;

No

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

176

Solutions of Selected Exercises

Example Path Prolog Clause

� �� ���
n1 n2

· · ·
opposite([N1,N2,N1|]).

� �� �

��
�/

�
����

n1 n2 n4

n3

· · ·
opposite([N1,N2,N3,N4,N2,N1|]).

� �� �

�

�

�

�
��

�
��

n1 n2 n5

n4n3

· · ·
opposite([N1,N2,N3,N4,N5,N2,N1|]).

Table A.3: Example Paths and Prolog Implementations – Case Two

�

�

�

�

?- consult(df4).

% links compiled into edges 0.00 sec, 1,964 bytes

% searchinfo compiled into info 0.00 sec, 2,120 bytes

% df4 compiled 0.05 sec, 6,272 bytes

Yes

?- depth first(s,goal path,link,Path).

Path = [s, a, b, e, f, g] ;

Path = [s, a, b, s, d, e, f, g] ;

Path = [s, a, d, e, f, g] ;

Path = [s, a, d, s, b, e, f, g] ;

Path = [s, d, e, f, g] ;

Path = [s, d, a, b, e, f, g] ;

Path = [s, d, a, s, b, e, f, g] ;

Path = [s, b, e, f, g] ;

Path = [s, b, a, d, e, f, g] ;

Path = [s, b, a, s, d, e, f, g] ;

No

Figure A.10: Sample Session for depth first/4

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

177

Solutions of Selected Exercises

extend path dl([], ,E-E).

extend path dl([N|Ns],Path,[[N|Path]|E1]-E2) :-

extend path dl(Ns,Path,E1-E2).

Figure A.11: Definition of extend path dl/3

In the same fashion, direct translation of the two clauses of dfs loop/4 from Fig. 2.15, p. 65, gives the clauses
shown in Fig. A.12, p. 178. (Notice that, as intended, the append goal has been dispensed with. Also notice
that the new clauses won’t interfere with the old ones and we may place them in the same file.) Fig. A.13,
p. 178, illustrates the updating of the agenda by this new version of dfs loop/4 .

The new version of depth first/4 is shown in (P-A.4).

Prolog Code P-A.4: Definition of depth first dl/4

1 depth_first_dl(Start,G_Pred,C_Pred,PathFound) :-

2 dfs_loop([[Start]|L]-L,G_Pred,C_Pred,PathFoundRev),

3 reverse(PathFoundRev,PathFound).

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Applications of Prolog

178

Solutions of Selected Exercises

�

�

�

�
�

�
�LIFO updating

of the agenda

dfs loop([Path|]- ,G Pred, ,Path) :- call(G Pred,Path).

dfs loop([[CurrNode|T]|L1]-L2︸ ︷︷ ︸,G Pred,C Pred,PathFound) :-

successors(C Pred,CurrNode,SuccNodes),

findall(Node,(member(Node,SuccNodes),

is path([Node,CurrNode|T])),Nodes),

extend path dl(Nodes,[CurrNode|T],
︷ ︸︸ ︷
L3-L1),

dfs loop(
︷ ︸︸ ︷
L3-L2,G Pred,C Pred,PathFound).

Figure A.12: New Clauses for dfs loop/4

[e|[b,a,s]] · · ·

L2︷ ︸︸ ︷
Old Agenda: [[e|T]|L1] - L2︷ ︸︸ ︷

︸ ︷︷ ︸
L1

T︷ ︸︸ ︷

[f|[e|T]] [d|[e|T]]

Extended Paths: L3 - L1︷ ︸︸ ︷
· · ·

︸ ︷︷ ︸
New Agenda: L3 - L2︸ ︷︷ ︸

L3

Figure A.13: Updating of the Agenda by dfs loop/4

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

179

Solutions of Selected Exercises

It is seen that on backtracking depth first/4 does not quite behave as expected:

?- depth first dl(s,goal path,link,Path).

Path = [s, a, b, e, f, g] ;

Path = [s, a, d, e, f, g] ;

Path = [s, d, e, f, g] ;

Path = [s, d, a, b, e, f, g] ;

Path = [g] ;

Path = [_G2571, g] ;

...

What is the explanation for the spurious solutions and non-termination, and, what is the remedy? The search
should finish once the agenda is empty. In the old version based on ordinary lists, dfs loop/4 terminates by
failure if its first argument is unified with the empty list:

?- dfs loop([],goal path,link,Path).

No

As L-L stands for the empty list, the corresponding query would be

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Applications of Prolog

180

Solutions of Selected Exercises

?- dfs loop(L-L,goal path,link,Path).

L = [[g| G415]| G412]

Path = [g| G415] ;

...

It succeeds, however. To prevent this from happening, we add in front of all other clauses of dfs loop/4 to
the database the clause

dfs_loop(L-L,_,_,_) :- !, fail.

upon which, as expected, the above query will fail:

?- dfs loop(L-L,goal path,link,Path).

No

Unfortunately, though, depth first dl/4 now always fails:

?- depth first dl(s,goal path,link,Path).

No

To see why, we first rewrite the new clause in the form

dfs_loop(A-A, B, C, D) :- !, fail.

The last query tries first to satisfy the subgoal

dfs loop([[Start]|L]-L,G Pred,C Pred,PathFoundRev)

with Start = s , G Pred = goal path , C Pred = link and PathFoundRev = Path . The added new clause will
now be tried first. In particular, it will be attempted to unify its first argument with [[s]|L]-L . Unification
should not succeed simply because [[s]|L]-L does not stand for the empty list. Let’s explore interactively
what really happens:

?- A-A = [[s]|L]-L.

A = [[s], [s], [s], [s], [s], [s], [s], [s], [...]|...]

L = [[s], [s], [s], [s], [s], [s], [s], [s], [...]|...]

Yes

It is seen that matching succeeds because Prolog does not check whether unification will give rise to an infinite
term (due to the same variable occurring in both terms to be unified).2 Unification of these terms will fail,
however, if we use unify with occurs check/2 , an SWI–Prolog implementation of full unification:

?- unify with occurs check(A-A,[[s]|L]-L).

No

2In the above query, essentially, unification of [[s]|L] and L is attempted. This should fail. However, without an occurs check

Prolog reports success:

?- [[s]|L] = L.

L = [[s], [s], [s], [s], [s], [s], [s], [s], [...]|...]

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

181

Solutions of Selected Exercises

Built-in Predicate: unify with occurs check(?Term1,?Term2)

Unifies the two terms Term1 and Term2 just as =/2 would do. If, however,
using =/2 would give rise to an infinite term, unify with occurs check/2 will
fail. Example:

?- unify with occurs check(f(X,a),f(a,X)).

X = a

Yes

?- X = f(X).

X = f(f(f(f(f(f(f(f(f(f(...))))))))))

Yes

?- unify with occurs check(X,f(X)).

No

In the added clause (P-A.5), this implementation of unification is therefore used.

Prolog Code P-A.5: Additional clause of dfs loop/4

1 dfs loop(L1-L2, , ,) :- unify with occurs check(L1,L2), !, fail.

Prolog now responds as expected:

?- consult(df).

% links compiled into edges 0.00 sec, 1,900 bytes

% searchinfo compiled into info 0.00 sec, 1,016 bytes

Warning: (c:/prolog/plsearch/df.pl:34):

Clauses of dfs loop/4 are not together in the source-file3

% df compiled 0.00 sec, 6,272 bytes

Yes

?- depth first dl(s,goal path,link,Path).

Path = [s, a, b, e, f, g] ;

Path = [s, a, d, e, f, g] ;

Path = [s, d, e, f, g] ;

Path = [s, d, a, b, e, f, g] ;

No

The only drawback of unify with occurs check/2 is that it is computationally more expensive than the
predicate =/2 .

The computational advantage of the difference list based version is confirmed by

?- time(findall(P,depth first_dl(s,goal path,link, P), Ps)).

% 1,293 inferences in 0.00 seconds (Infinite Lips)

Yes

?- time(findall(P,depth first(s,goal path,link, P), Ps)).

% 1,414 inferences in 0.06 seconds (23567 Lips)

Yes

3To suppress this warning message, place the directive

:- discontiguous dfs loop/4.

just after the use module directives in df.pl.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

182

Solutions of Selected Exercises

�

�

�

�
�

�
�FIFO updating

of the agenda

⎫⎬
⎭

�
�

�
�Copied from the augmented version of df.pl

(Exercise 2.5, Fig. A.11, p. 177)

�

:- discontiguous dfs loop/4.

...

breadth first dl(Start,G Pred,C Pred,PathFound) :-

bfs loop([[Start]|L]-L,G Pred,C Pred,PathFoundRev),

reverse(PathFoundRev,PathFound).

bfs loop(L1-L2, , ,) :- unify with occurs check(L1,L2), !, fail.

bfs loop([Path|]- ,G Pred, ,Path) :- call(G Pred,Path).

bfs loop([[CurrNode|T]|L1]-L2︸ ︷︷ ︸,G Pred,C Pred,PathFound) :-

successors(C Pred,CurrNode,SuccNodes),

findall(Node,(member(Node,SuccNodes),

is path([Node,CurrNode|T])),Nodes),

extend path dl(Nodes,[CurrNode|T],
︷ ︸︸ ︷
L2-L3),

bfs loop(
︷ ︸︸ ︷
L1-L3,G Pred,C Pred,PathFound).

% auxiliary predicates ...

...

extend path dl([], ,E-E).

extend path dl([N|Ns],Path,[[N|Path]|E1]-E2) :-

extend path dl(Ns,Path,E1-E2).

Figure A.14: Clauses Added to bf.pl

Exercise 2.6. The clauses added to bf.pl are shown in Fig. A.14. The new version responds as intended:

?- breadth first dl(s,goal path,link,Path).

Path = [s, d, e, f, g] ;

Path = [s, a, b, e, f, g] ;

Path = [s, a, d, e, f, g] ;

Path = [s, d, a, b, e, f, g] ;

No

And, it performs better than the old one:

?- time(findall(P,breadth first dl(s,goal path,link, P), Ps)).

% 1,293 inferences in 0.00 seconds (Infinite Lips)

Yes

?- time(findall(P,breadth first(s,goal path,link, P), Ps)).

% 1,378 inferences in 0.00 seconds (Infinite Lips)

Yes

Exercise 2.7. See Fig. A.15.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

183

Solutions of Selected Exercises

⎫⎬
⎭ #

$
%
&

New goals
due to the
presence of
the horizon

�

⎫⎬
⎭�

}
�
�

�
�Clause essentially as

in Fig. 2.15, p. 65

�b dfs loop([Path|],G Pred, , ,Path) :- call(G Pred,Path).

b dfs loop([[CurrNode|T]|Others],G Pred,C Pred,Hor,PathFound) :-

length([CurrNode|T],ListLength),

PathLength is ListLength - 1,

PathLength < Hor,

successors(C Pred,CurrNode,SuccNodes),

findall(Node,(member(Node,SuccNodes),

is path([Node,CurrNode|T])),Nodes),

extend path(Nodes,[CurrNode|T],Paths),

append(Paths,Others,NewOpenPaths),

b dfs loop(NewOpenPaths,G Pred,C Pred,Hor,PathFound).

b dfs loop([[CurrNode|T]|Others],G Pred,C Pred,Hor,PathFound) :-

length([CurrNode|T],ListLength),

PathLength is ListLength - 1,

PathLength >= Hor,

b dfs loop(Others,G Pred,C Pred,Hor,PathFound).

Figure A.15: Definition of b dfs loop/5 (Exercise 2.7)

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Applications of Prolog

184

Solutions of Selected Exercises

} �
�

�
�Declare lastdepth/1

to be dynamic
�

} �
�

�
�Initialize saved value

of horizon to zero
�

} �
�

�
�Saving old value of

horizon
�

:- use module(bdf).

:- dynamic(lastdepth/1).

iterative deepening(Start,G Pred,C Pred,PathFound) :-

retractall(lastdepth()),

assert(lastdepth(0)),

iterative deepening aux(1,Start,G Pred,C Pred,PathFound).

iterative deepening aux(Depth,Start,G Pred,C Pred,PathFound) :-

bounded df(Start,G Pred,C Pred,Depth,PathFound).

iterative deepening aux(Depth,Start,G Pred,C Pred,PathFound) :-

retractall(lastdepth()),

assert(lastdepth(Depth)),

NewDepth is Depth + 1,

iterative deepening aux(NewDepth,Start,G Pred,C Pred,PathFound).

Figure A.16: Modified Version of iterd.pl (Exercise 2.8)

Exercise 2.8. We add four new goals to the first clause of b dfs loop/5 ; this is shown in (P-A.6).

Prolog Code P-A.6: Modified first clause of b dfs loop/5

1 b_dfs_loop([Path|_],G_Pred,_,_,Path) :- call(G_Pred,Path),

2 lastdepth(LastDepth),

3 length(Path,ListLength),

4 PathLength is ListLength - 1,

5 PathLength > LastDepth.

Furthermore, we need to modify iterd.pl which is shown in Fig. A.16.

Exercise 2.9. To have a unique solution, add the cut (!) in the definition of iterative deepening/4 as
follows.

iterative_deepening(Start,G_Pred,C_Pred,PathFound) :-

iterative_deepening_aux(1,Start,G_Pred,C_Pred,PathFound), !.

Exercise 2.14. Let us assume that we have consulted loop puzzle1a.pl; then, automated.pl will also be
loaded. The predicate segment/1 may be defined interactively by
?- consult(user).

|: segment(S) :- (circle(P); sharp(P)), link([P],S).

|:
�� ��Ctrl +
�� ��D

% user compiled 61.14 sec, 332 bytes

Yes

It will generate all segments for the particular problem:

?- segment(S).

S = [pos(2,1), pos(1,1), pos(1,2), pos(1,3)] ;

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

185

Solutions of Selected Exercises

S = [pos(2,2), pos(1,2), pos(1,3)] ;

...

All pairs of linked segments may be generated thus

?- segment(S1), link(S1,S2).

S1 = [pos(2,1), pos(1,1), pos(1,2), pos(1,3)] S2 = [pos(2,2)] ;

...

This generator may be used to define a new version of link/2 by facts . (We can do this because the network
and therefore the number of facts is finite.) We do this by a failure driven loop:

?- segment(S1), link(S1,S2), assert(newlink(S1,S2)), fail.

No

?- listing(newlink).

newlink([pos(2,1), pos(1,1), pos(1,2), pos(1,3)], [pos(2,2)]).

...

Use now newlink/2 as you would use link/2 .
The number of nodes and number of directed edges are respectively found by

?- setof(S,segment(S), Ss), length(Ss,L).

L = 37

?- setof((S1, S2),newlink(S1, S2), Ps), length(Ps,L).

L = 99

To find out the corresponding quantities for the ‘hand-knit’ solution, we first consult the file hand knit.pl.
Then, we enter the marks’ positions in the database, followed by a definition of segment/1 as before:
?- consult(user).

|: circle(pos(1,4)). circle(pos(3,5)).

|: circle(pos(4,2)). circle(pos(6,6)).

|: sharp(pos(1,6)). sharp(pos(2,1)). sharp(pos(2,2)).

|: sharp(pos(4,1)). sharp(pos(5,5)).

|: segment(S) :- (circle(P); sharp(P)), link([P],S).

|:
�� ��Ctrl +
�� ��D

% user compiled 0.03 sec, 1,256 bytes

Yes

Whereas the number of nodes is confirmed to be 37 by exactly the same query as before, the number of edges
is now found by

?- setof((S1, S2),(segment(S1),link(S1, S2)), Ps),

length(Ps,L). 4

L = 166

Exercise 2.19. The additional constraint requires that the length of the goal path be equal to the number of
positions on the board – the board size. Since paths are represented as lists of segments, which themselves are
lists of board positions, the path length will be the length of the path’s flattened list representation. This is im-
plemented in (P-A.7) by adding four new goals to the definition of goal path/1 . (The predicate goal path/1

4Here we have explicitly to specify S1 to be a segment as link/2 has been defined in hand knit.pl by us-
ing the wilde card () in its first argument. Failing to do so would instantiate S1 to the wildcard, return-
ing an erroneous value for the number of network connections which, incidentally, would be the number of facts defin-
ing link/2 in hand knit.pl.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

186

Solutions of Selected Exercises

is defined in loops.pl.)

Prolog Code P-A.7: Augmented definition of goal path/1

1 goal_path([H|T]) :- number_of_marks(M),

2 length([H|T],M),

3 last(E,T),

4 link(H,E),

5 size(Row,Col), % added goal

6 Size is Row * Col, % added goal

7 flatten([H|T],F), % added goal

8 length(F,Size). % added goal

A.3 Chapter 3 Exercises

All Prolog source files for Chap. 3 are available in the directory plsearch.
Exercise 3.2. Manual solution. We get the straight line distances from any node to node 10 by Pythagoras
(Table A.4). The edge lengths for Fig. 3.4, shown in Table A.5, are obtained from the node co-ordinates in
Table 3.2.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Applications of Prolog

187

Solutions of Selected Exercises

Node 1 2 3 4 5 6 7 8 9
Distance to node 10 4.00 4.24 5.83 2.00 2.24 5.39 3.16 1.41 5.10

Table A.4: Values of H

– – – – – – 4 2 6 10
– – – – 5 1 – – 9
– – – – 1 5 – 8
– – – 4 – – 7
– 3 1 – – 6
– 3 5 – 5
– 4 6 4
6 – 3
4 2
1

Table A.5: Distances between Nodes (Edge Lengths) in Fig. 3.4

The hand computations in Fig. A.18, p. 189, tell us that the shortest route is

1 → 2 → 5 → 8 → 10

and its length is 10.
Prolog implementation. We define in graph b.pl the predicates link/2 and in/3 with obvious meanings.

link(1,2). link(1,3). ...

in(1,1,4). in(2,2,7). ...

The heuristic is the Euclidean distance, defined by e cost/3 in (P-A.8).

Prolog Code P-A.8: Definition of e cost/3

1 e_cost(Node,Goal,D) :- in(Node,X1,Y1),

2 in(Goal,X2,Y2),

3 D is sqrt((X1 - X2)^2 + (Y1 - Y2)^2).

The edge costs are calculated by the city block distance, defined by edge cost/3 in (P-A.9).

Prolog Code P-A.9: Definition of e cost/3

1 edge_cost(Node1,Node2,Cost) :- link(Node1,Node2),

2 in(Node1,X1,Y1),

3 in(Node2,X2,Y2),

4 Cost is abs(X1 - X2) + abs(Y1 - Y2).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

188

Solutions of Selected Exercises

�

�

�

�

?- consult(graph b).

% asearches compiled into a ida idaeps 0.00 sec, 7,736 bytes

% graph b compiled 0.00 sec, 14,800 bytes

Yes

?- path.

Select start node 1, ..., 10: 1.

Select goal node 1, ..., 10: 10.

Select algorithm (a/ida/idaeps)... a.

% 561 inferences in 0.00 seconds (Infinite Lips)

Solution in 4 steps.

1 -> 2 -> 5 -> 8 -> 10

Total cost: 10

Yes

Figure A.17: Automated Search

The remaining predicates are adopted from graph a.pl with minor modifications. Fig. A.17 shows the auto-
mated search.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Applications of Prolog

189

Solutions of Selected Exercises

[4.00-[1]-0]
1©

��

[8.24-[2,1]-4, 11.83-[3,1]-6]
2©

��

[8.24-[2,1]-4, 11.83-[3,1]-6]
1©

��

[10-[4,2,1]-8, 9.24-[5,2,1]-7, 12.39-[6,2,1]-7, 11.83-[3,1]-6]
2©

��

[9.24-[5,2,1]-7, 10-[4,2,1]-8, 11.83-[3,1]-6, 12.39-[6,2,1]-7]
1©

��

[9.41-[8,5,2,1]-8, 17.10-[9,5,2,1]-12, 10-[4,2,1]-8, 11.83-[3,1]-6, 12.39-[6,2,1]-7]
2©

��

[9.41-[8,5,2,1]-8, 10-[4,2,1]-8, 11.83-[3,1]-6, 12.39-[6,2,1]-7, 17.10-[9,5,2,1]-12]
1©

��

[10.00-[10,8,5,2,1]-10, 10-[4,2,1]-8, 11.83-[3,1]-6, 12.39-[6,2,1]-7, 17.10-[9,5,2,1]-12]
2©

��

[10.00-[10,8,5,2,1]-10, 10-[4,2,1]-8, 11.83-[3,1]-6, 12.39-[6,2,1]-7, 17.10-[9,5,2,1]-12]
3©

�� success

Figure A.18: Hand Computations: The Evolution of the Agenda for the A–Algorithm (from node 1 to node 10 in Fig 3.4)

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

190

Solutions of Selected Exercises

Exercise 3.3, part (c). We search the network in Fig. 3.6 by the interactive session in Fig. A.19.5

�

�

�

�

?- consult(graph c).

% asearches compiled into a ida idaeps 0.00 sec, 7,736 bytes

% graph c compiled 0.00 sec, 31,068 bytes

Yes

?- adj(2, A), co ord(2, Co), path(A, Co).

Select start node 1, ..., 26: 1.

Select goal node 1, ..., 26: 26.

Select algorithm (a/ida/idaeps)... a.

% 74,926 inferences in 0.02 seconds (4795264 Lips)

Solution in 11 steps.

1 -> 2 -> 5 -> 7 -> 9 -> 11 -> 15 -> 16 -> 18 -> 21 -> 24 -> 26

Total cost: 54

Yes

Figure A.19: Interactive Session for Searching the Network in Fig. 3.6

Exercise 3.6. Table A.6 shows that Hill Climbing and Best First, save for the simplest of cases, do not find the
shortest route to the goal node. It is also seen that Best First usually finds a shorter route to the goal node but

Test Case Number 1 2 3 4 5 6 7 8 9 10
Goal Node at Depth 8 8 10 12 13 16 16 20 30 30

mp
hc 8 84 954 2200 445 444 442 348 1002 730

Number
bestf 8 38 262 - 91 90 88 196 - 234

of

mh
hc 8 8 90 112 339 338 336 406 126 528

Moves
bestf 8 8 10 32 45 44 42 66 74 132

Table A.6: Results for the Eight Puzzle (Hill Climbing and Best First)

at a much higher computational cost than Hill Climbing. Finally, the better heuristic (MH) is seen to deliver
better solutions throughout. (Cases which could not be finished due to prohibitively long CPU times are not
shown here.)

Exercise 3.11. Modify the clauses of a loop/3 and dfs contour loop/6 by replacing each occurrence of the
goal

findall(Node,(member(Node,SuccNodes),not(member(Node,T))),Nodes)

by

findall(Node,member(Node,SuccNodes),Nodes)

(The modified code is in msearches.pl.) Thus, for example, the gain in CPU time is 17% for case 4 with
Iterative Deepening A∗ and the Euclidean heuristics.

5The present search problem happens also to be of the type considered in Sect. 3.4. The result in Fig. A.19 is confirmed by
Fig. 3.10, p. 122.

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

191

Solutions of Selected Exercises

A.4 Chapter 4 Exercises

All Prolog source code for Chap. 4 is available in the files sieve.pl and draw.pl. The Linux shell scripts
(S-4.1), p. 141, and (S-A.1), p. 195, are in the files sieve and curves, respectively.

Exercise 4.2. circ command/4 is defined in (P-A.10).

Prolog Code P-A.10: Definition of circ command/4 and Auxiliaries

1 circ(R, X, Y, Alpha, Pair) :-

2 Pi is 3.1415926,

3 Rad is Alpha * Pi / 180,

4 S is sin(Rad),

5 C is cos(Rad),

6 PairX is X + R * C,

7 PairY is Y + R * S,

8 concat atom([’(’,PairX,’,’,PairY,’)’], Pair).

9 circ pairs(R, X, Y, NInt, Pairs) :-

10 mesh(1, NInt, Mesh),

11 maplist(circ(R, X, Y), Mesh, Pairs).

12 circ command(R, X, Y, NInt) :-

13 circ pairs(R, X, Y, NInt, Pairs),

14 concat atom([’\\newcommand{\\defcirc}{\\drawline’|Pairs], Atom),

15 concat atom([Atom,’}’], C),

16 write(C).

Illustration.

1© A counterclockwise rotation by α = 60◦ on a circle of radius r = 10 with centre at (x, y) = (5, 2) maps
the ‘rightmost’ point on the perimeter (15, 2) to (10, 10.6603).

?- circ(10, 5, 2, 0, P).

P = ’(15,2)’

Yes

?- circ(10, 5, 2, 60, P).

P = ’(10.0,10.6603)’

Yes

The output of circ/5 is an atom.

2© A uniformly spaced sequence of points on the circle’s perimeter is generated by circ pairs/5 . For
example, points on the circle in 1© spaced at α = 60◦(= 360◦/6), beginning with (15, 2), are obtained by

?- circ_pairs(10, 5, 2, 6, Pairs).

Pairs = [’(15,2)’, ’(10.0,10.6603)’, ’(3.09401e-07,10.6603)’,

’(-5.0,2.0)’, ’(-6.18802e-07,-6.66025)’, ’(10.0,-6.66025)’, ’(15.0,2.0)’]

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Applications of Prolog

192

Solutions of Selected Exercises

circ pairs/5 uses mesh/3 ((P-4.4), p. 149) as an auxiliary. The output of circ pairs/5 is a list of
atoms. They represent the co-ordinates of the points which will form the vertices of the approximating
polygon. \drawline from epic will be used to connect them.

3© circ command/4 essentially concatenates the list entries from 2© thus

?- circ command(10, 5, 2, 6).

\newcommand{\defcirc}{\drawline(15,2)(10.0,10.6603)(3.09401e-07,10.6603)

(-5.0,2.0)(-6.18802e-07,-6.66025)(10.0,-6.66025)(15.0,2.0)}

Yes

4© The output from 3© is manually adjusted (in an editor) to result in the LATEX definition

\newcommand{\defcirc}{\drawline(15,2)(10.0,10.6603)(3.09401e-07,10.6603)

(-5.0,2.0)(0,-6.66025)(10.0,-6.66025)(15.0,2.0)}

Exercise 4.3. The definition of circ/5 is modified to imp circ/5 as shown in (P-A.11).

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Applications of Prolog

193

Solutions of Selected Exercises

Prolog Code P-A.11: Definition of imp circ/5

1 imp_circ(R, X, Y, Alpha, Pair) :-

2 Pi is 3.1415926,

3 Rad is Alpha * Pi / 180,

4 S is sin(Rad),

5 C is cos(Rad),

6 PairX is X + R * C,

7 sformat(SPairX, ’~7f’,PairX),

8 PairY is Y + R * S,

9 sformat(SPairY, ’~7f’,PairY),

10 concat_atom([’(’,SPairX,’,’,SPairY,’)’], Pair).

Lines 6-9 in (P-A.11) illustrate the use of sformat/3 ; it unifies the value in floating point notation of a number
with a string. Seven digits are used after the decimal point. The string then can serve as a component in the
list of atoms in the first argument of concat atom/2 .

Rename circ pairs/5 and circ command/4 in (P-A.10) to imp circ pairs/5 and imp circ command/4 ,
respectively, and also change in them all instances of circ... to imp circ... . (These two predicates with
these obvious changes are not shown here.)

Exercise 4.4. The definition of gen command2/6 is shown in (P-A.12).

Prolog Code P-A.12: Definition of gen command2/6

1 gen_mesh(Lower, Upper, NInt, Mesh) :-

2 Lower < Upper,

3 integer(NInt), NInt > 0,

4 gen_mesh(Lower, Upper, NInt, NInt, Mesh, []), !.

5 gen_mesh(Lower, _, _, 0, [Lower|Acc], Acc).

6 gen_mesh(Lower, Upper, NInt, NumInt, List, Acc) :-

7 H is Lower + NumInt * (Upper - Lower) / NInt,

8 NewNumInt is NumInt - 1,

9 gen_mesh(Lower, Upper, NInt, NewNumInt, List, [H|Acc]).

10 applic(Fun, Pars, Argument, Outcome) :- append(Pars, [Argument], List),

11 append(List, [Outcome], Args),

12 apply(Fun, Args).

13 gen_vals(Fun, Lower, Upper, NInt, Pars, Vals) :-

14 gen_mesh(Lower, Upper, NInt, Mesh),

15 maplist(applic(Fun, Pars), Mesh, Vals).

16 gen_command2(CName, Fun, Lower, Upper, NInt, Pars) :-

17 gen_vals(Fun, Lower, Upper, NInt, Pars, Vals),

18 concat_atom([’\\newcommand{’, CName, ’}{\\drawline’|Vals], Atom),

19 concat_atom([Atom,’}’], Command),

20 write(Command).

gen mesh/4 is defined by the accumulator technique using gen mesh/6 . In applic/4 , first the argument list
of apply/2 is assembled by list concatenation and then apply/2 is called. The remaining two predicates are

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

194

Solutions of Selected Exercises

easily understood.

Exercise 4.5. The definition of log spiral/5 is shown in (P-A.13).

Prolog Code P-A.13: Definition of log spiral/5

1 log_spiral(Alpha, CentreX, CentreY, RotAngle, Pair) :-

2 Pi is 3.1415926,

3 RadA is Alpha * Pi / 180,

4 SA is sin(RadA),

5 CA is cos(RadA),

6 K is CA/SA,

7 Phi is RotAngle * Pi / 180,

8 R is exp(K * Phi),

9 PairX is CentreX + R * cos(Phi),

10 sformat(SPairX, ’~7f’,PairX),

11 PairY is CentreY + R * sin(Phi),

12 sformat(SPairY, ’~7f’,PairY),

13 concat_atom([’(’,SPairX,’,’,SPairY,’)’], Pair).

Notice that the pattern set by (P A.11), p. 193, (the definition of the improved circle imp circ/5) is broadly
followed here. This applies in particular to the use of sformat/3 for achieving a floating point representation
of the points’ co-ordinates. (As before, seven digits are used after the comma.)

Exercise 4.6. The definition of curves/2 is shown in (P-A.14).

Prolog Code P-A.14: Definition of curves/2

1 curves(InFile, OutFile) :- see(InFile),

2 tell(OutFile),

3 execute,

4 seen,

5 told.

6 execute :- get_line(L),

7 ((L = [’\n’], execute);

8 (L = [’%’|_], copy_comment(L), execute);

9 (L = [end_of_file], true);

10 (exec_line(L), execute)).

11 copy_comment(List) :- atom_chars(Atom,List),

12 write(Atom).

13 exec_line(Line) :- atom_chars(A,Line),

14 term_to_atom(T,A),

15 apply(T,[]),

16 write(’\n’).

Notice that the execute/0 in (P-A.14) uses the predicate get line/1 defined in (P-4.2), p. 137. This predicate

http://bookboon.com/

Download free eBooks at bookboon.com

Applications of Prolog

195

Solutions of Selected Exercises

reads from a file the next line as a list of characters.

Exercise 4.7. The definition of the shell script curves is shown in (S-A.1). It uses the temporary file temp

for communicating the two filenames to the Prolog predicate curves/2 . (This construct has been seen before
in Sect. 4.1.4.)

Linux Shell Script S-A.1: curves

1 #!/bin/bash

2 if [$# -ne 2]; then

3 echo "Error: supply two arguments"

4 else

5 if [-e $1]; then

6 echo $1 > temp

7 echo $2 >> temp

8 #

9 pl -f draw.pl -g go -t halt

10 #

11 echo "Input file : ’$1’"

12 echo "Output file: ’$2’"

13 echo "LaTeX source ’$2’ created"

14 #

15 rm temp

16 else

17 echo "Error: file ’$1’ does not exist"

18 fi

19 fi

It calls go/0 (a predicate in draw.pl) which then uses curves/2 from Exercise 4.6; go/0 is defined in (P-A.15).

Prolog Code P-A.15: Definition of go/0

1 go :- see(temp),

2 get_string(InFile),

3 get_string(OutFile),

4 curves(InFile, OutFile).

5 %

6 % auxiliary predicate get_string/1 uses get_line/1 from (P-4.2), p. 137

7 %

8 get_string(String) :- get_line(List),

9 append(ShortList, [’\n’],List),

10 atom_chars(String, ShortList).

The auxiliary predicate get string/1 in (P-A.15) uses get line/1 , known from (P-4.2), p. 137.

http://bookboon.com/

